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Matrix cracking with frictional bridging fibres 
in continuous fibre ceramic composites 

C. H. HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 

Matrix cracking bridged by intact fibres, which debond from the matrix and then slip against 
the matrix in friction, has been analysed for unidirectional fibre-reinforced ceramic 
composites under tensile loading parallel to the fibre axis. The effect of bonding at the 
fibre-matrix interface, Poisson's effect of the fibre, and residual stresses were included in the 
analysis. Both the crack-opening displacement and the displacement of the composite due 
to interfacial debonding have been analytically related to the fibre bridging stress. The 
critical stress for matrix cracking was also analysed. The existing solutions can be recovered 
by considering a special case in the present generalized solution. 

1. Introduction 
Ceramic materials exhibit superior performance at 
high temperatures. However, their utilization in struc- 
tural components is severely limited by their brittle- 
ness. One approach toward substantially reducing 
this brittleness is by incorporating fibres aligned with 
the loading direction. The US Department of Energy, 
Office of Industrial Technologies, has developed 
a comprehensive strategy and plan for continuous 
fibre-ceramic composite (CFCC) materials to meet 
the demands in a variety of industrial applications [1]. 

The mechanical performance of fibre-reinforced ce- 
ramic composites is intimately related to their inter- 
facial properties [2, 3]. To predict the mechanical 
behaviour of composites, macromechanical modelling 
h~ts been employed [4-6]. However, theoretical ana- 
lyses at the micromechanical level are required to 
define the modules for the macromechanical model- 
ling. A crucial toughening mechanism for the com- 
posite involves matrix cracks bridged by intact fibres. 
These intact fibres debond from and slip against the 
matrix in friction when the composite is loaded in 
tension [2, 3]. It is imperative to define a module 
containing (1) an analytical relation between the fibre 
bridging stress and other parameters, and (2) the criti- 
cal stress for matrix cracking. This work has been 
performed. However, the effects of bonding at the 
fibre-matrix interface, Poisson's effect of the fibre, and 
residual stresses are often ignored in the existing ana- 
lyses [7, 8]. Also, when the fibre bridging stress is 
related to a displacement, the difference between the 
crack-opening displacement and the displacement of 
the composite due to interfacial debonding is not 
comprehended by many researchers. 

The purpose of the present study was to address the 
issues mentioned above. First, Poisson's effect, inter- 
facial bonding, and residual stresses were included in 
the analysis. Second, the difference between the 
crack-opening displacement and the displacement of 

0022-2461 �9 1995 US Government 

the composite due to interfacial debonding was ad- 
dressed, and their analytical relations with the fibre 
bridging stress were derived. Third, the critical stress 
for matrix cracking was analysed. Finally, a special 
case of the present generalized solution has been com- 
pared to existing solutions. The present solution can 
be readily implemented into a macromechanical 
model (e.g. for the CFCC programme). 

2. Analyses 
The geometric configuration used in the present anal- 
ysis is illustrated in Fig. 1, where a remote uniform 
stress, o~, is applied on a unidirectional composite 
containing a crack bridged by intact fibres. While the 
bridging fibres exert a bridging stress, Oo, to oppose 
crack-opening, the relative displacement between the 
fibre and the matrix at the crack surface specifies the 
crack-opening displacement, 2Uo. Also, on each load- 
ing side of the composite, an additional displacement, 
Uaebo.d, in the loading direction is introduced due to 
debonding and sliding at the fibre-matrix interface. 
This problem can be modelled by using a representa- 
tive volume element (Fig. 2). A fibre with a radius, a, is 
located at the centre of a coaxial cylindrical shell of the 
matrix' with an outer radius, b, such that a2/b 2 corres- 
ponds to the volume fraction of fibres, Vf (Fig. 2a). At 
the crack surface, the bridging stress, 00, of the fibre 
can be related to cro~ by 

O'oo 
~ o  - ( t )  

7e 

In the absence of interfacial debonding, the composite 
has a displacement, Ubo,aed, in the axial direction when 
the fibre is subjected to a loading stress, o o (Fig. 2b). In 
the presence of interfacial debonding, both the half 
crack-opening displacement, Uo, and the displacement 
of the composite due to interfacial debonding,/'/debond, 
are shown in Fig. 2c. 
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Figure 1 Schematic drawing showing a matrix crack bridged by 
intact fibres. 

U = Ubonded + Udebond I~ 

where cyf is the axial stress in the fibre, and z is the 
axial coordinate. When the interface is debonded and 
subjected to a residual clamping stress, %, the inter- 
facial shear stress dictated by Coulomb friction is 
[15, 16] 

~i = ~(~o + %) (3) 

where p is the coefficient of friction, O'p is the inter- 
facial radial stress induced by Poisson's effect and the 
loading stress. The residual clamping stress is usually 
assumed to be constant along the fibre length [13-161. 
When Poisson's effect is considered pointwise, the 
interfacial frictional stress is not constant and the axial 
stress distribution in the fibre is non-linear due to the 
non-uniformity of % along the sliding length [13-161 
which, in turn, result in the complexity of the analysis. 
Hence, to simplify the analysis, Poisson's effect along 
the sliding length is considered not pointwise but in an 
average sense in the present study. To achieve this, the 
average value of ~p (i.e. 6v) along the sliding length is 
derived as follows. This averaging technique has been 
used to analyse the pull-out, push-out and push-in 
problems, and the results obtained are in excellent 
agreement with those obtained from rigorous ana- 
lyses, in which Poisson's effect is considered pointwise 
E171. 

For a frictional interface, the axial stresses in the 
fibre and the matrix, ~r and CYm, vary slowly over 
distances comparable to the fibre radius. In this case, 
the characteristics of stresses in any section transverse 
to the axial direction can be approximated by a Lam6 
problem, and ~f and cy~ are approximated to be inde- 
pendent of the radial coordinate [13, 141. The mech- 
anical equilibrium condition requires 

(a) (b) (c) 

Figure 2 A representative volume element for the fibre bridging 
problem, (a)prior  to loading, (b)loading without interfacial 
debonding, and (c) loading with interfacial debonding. The half 
crack opening displacement, uo, and the displacement of the com- 
posite due to interfacial debonding, Udebond, are also shown. 

Vfcyf + V~o-m = Vf~o (4) 

where Vm ( = 1 - Vf) is the volume fraction of the 
matrix. The radial and the tangential stresses, or and 
eye, can be related to % by [13, 14, 181 

O'fr = (~fO = O'p (5) 

When including the three factors (Poisson's effect, 
interracial bonding, and residual stresses), the stress 
analysis for the fibre bridging problem is formidable. 
When the fibre bridging analysis is incorporated in 
a macromechanical model, the complexity in the anal- 
ysis will be compounded. Hence, to facilitate the ap- 
plication of the fibre bridging analysis, a simplified 
analysis is imperative. Without losing the essence of 
the three factors, simplifications of the analysis are 
presented as follows. 

2.1. Poisson's effect 
The stress transfer from the fibre to the matrix 
through the interracial shear stress, zi, is dictated by 
[7-163 

dof 2zl 
dz a 

(2) 

for the fibre, and 

O'mr = O'p at r = a (6a) 

- ( 1  + Vf)op 
crmo = a t r  = a (6b) 

v ~  

for the matrix at the interface. 
The condition that the fibre and the matrix remain 

in contact during frictional sliding requires continuity 
of the tangential strain at the interface, such that 

1 1 
~ [ ( 1  - v f ) %  - v f ~ d  - 

Em ~r  

I 
where E and v are Young's modulus and Poisson's 
ratio, and the subscripts, f and m, denote the fibre and 
the matrix, respectively. Substitution of Equations 4-6 
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into Equation 7 yields 

V(VfEm Vf VmX~ VfVmCYO_q/D 
(IP = L \  Ef + --~-m ) (3"f Vm A /  

where D is given by 

1 + Vf (1 - - v f ) E  m 
D - + V m +  

I'm Ef 

(8) 

(9) 

Consequently, the solution of ~p from Equation 8 is 
contingent upon the determination of the average 
value of af (i.e. ~f) along the sliding length. Replacing 
% by (yp in Equations 2 and 3, the interfacial frictional 
stress has an average value, ~i, and err varies linearly 
along the sliding length. However, it is noted that ~i 
varies with the sliding zone length and, hence, the 
loading stress. 

The interfacial radial stress due to Poisson's effect, 
%, is tensile which is greatest at the loaded surface 
[13-17], counteracts the residual clamping stress, and 
may result in a frictionless interface. The loading con- 
dition satisfying the frictional interface condition 
(i.e. % + % < 0) is 

DEf 
o < - - - - c y c  (10) 

vfEm 

where % is negative (i.e. compressive). Hence, the 
present analysis is limited to the loading condition 
depicted by Equation 10. 

2.2. Residual axial stresses 
The interface is bonded prior to loading (i.e. no debon- 
ding under residual stresses is assumed). The crack 
surface is traction free, and the residual axial stress is 
zero at the crack surface. However, the residual axial 
stresses in the fibre and the matrix increase quickly 
and reach equilbrium values, t~f~ and (Ymz, respectively 
within a length of a few fibre radii underneath the 
surface [11, 19, 20]. To simplify the present analysis, 
the residual axial stresses in the fibre and the matrix 
are assumed to be constants and equal ofz and Crmz, 
respectively, along the entire fibre length when the 
interface remains bonded. Also, to satisfy the mech- 
anical equilibrium condition, ry~n= is related to ryfz by 

Vf (Yf z 
(Ymz -- (11) 

I'm 

Upon interfacial debonding, the residual axial stresses 
are relaxed which, in turn, induce axial strains 
- ~ f z / E f  and - ~m=/Em in the fibre and the matrix, 

respectively. 

2.3. The debonding condition 
In the presence of interfacial bonding, an initial de- 
bond stress, ~d, has been defined for the single fibre 
pull-out problem [15-17]. When the applied stress on 
the fibre reaches Od, interracial debonding initiates at 
the loaded surface. During subsequent loading, the 
debonding zone length, h, increases, and the axial 
stress in the fibre at the end of the debonding zone is 
assumed to be equal to crd. This is a good assumption 

for single fibre pull-out where the radial dimension of 
the specimen is much greater than the fibre radius, and 
this issue is discussed as follows. 

A difference has been noted between debonding at 
the loaded surface and debonding inside the com- 
posite [21]. Whereas the matrix is free at the loaded 
surface, it is subjected to axial stresses inside the com- 
posite due to the stress transfer from the fibre to the 
matrix. Hence, the magnitude of the interracial shear 
stress induced by a loading stress, %, on the fibre at 
the loaded surface is different from that induced by an 
axial stress, %, in the fibre inside the composite. How- 
ever, when the radial dimension of the specimen is 
much greater than the fibre radius, the axial stress in 
the matrix is relatively small and the contribution of 
the matrix axial stress to the interfacial shear is negli- 
gible. Hence, it is a good approximation that the axial 
stress in the fibre is equal to % at the end of the 
debonding zone for a single fibre pull-out problem. 
However, during cracking of a composite, multiple 
fibres are involved in the pull-out process, and the 
condition that the radial dimension of the surround- 
ing matrix is much greater than the fibre radius is not 
valid. Hence, modification of the debonding con- 
dition is required for the fibre bridging problem in 
a composite. 

The shear stress at the interface results from the 
tendency of a relative displacement in the axial direc- 
tion between the fibre and the matrix. It has been 
proposed that interfacial debonding occurs when the 
mismatch in the axial strain between the fibre and the 
matrix reaches a critical value [22, 23]. When the 
loading stress reaches the debond stress, cyd, interfacial 
debonding initiates at the loaded surface, and the 
critical mismatch strain, ad, is 

~d 
ed - (12) 

Ef 

During subsequent loading (i.e. ~o > O'd), interfacial 
debonding extends underneath the surface, and the 
mismatch strain at the end of the debonding zone 
remains ed, such that 

O'fd O'md 
ed = (13) 

Ef E m 

where O'fd and (~md are the axial stresses at the end of 
the debonding zone in the fibre and the matrix, respec- 
tively, which satisfy the mechanical equilibrium 
condition depicted by Equation 4. Combination of 
Equations 4, 12 and 13 yields 

VfEfGo --k VmEmCYd 
Old = (14a) 

Ec 

where 

VfEm((Yo - (Yd) 
(3"md = (14b) 

Er 

E c = g fE f  --}- gmE m (14c) 

Equation 14a and b are required in determining the 
sliding zone length. 
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Figure 3 The normalized axial stress in the fibre at the end of the 
debonded zone, Crfa/crd, as a function of the normalized loading 
stress on the fibre, fro/Oral, at different values of VInEs,~ VfEf. 

It is noted that Crfd and O'md approach (3 d and 0, 
respectively, when VmEm is much greater than VfEf  
(see Equation 14a and b). Hence, the interfacial debon- 
ding condition adopted for a single fibre pull-out is 
valid when VmEm >> VfEf .  TO illustrate this, crfd/cr d is 
plotted as a function of cr0/cra at different values of 
V, nEm/VfEf  in  Fig. 3. When the applied stress in- 
creases, the debonded zone length increases, and the 
deviation of the axial stress in the fibre at the end of 
the debonded zone (i.e. ~fa) from the initial debond 
stress (i.e. Oa) increases. The slope of the Crfa/Cra versus 
~O/~d curve decreases as VmEm/VrEf  increases. 

2.4. The sliding zone length 
When Poisson's effect is treated in an average sense, i~f 
varies linearly from ao at the loaded end to era at the 
end of the sliding zone, and ~f is 

(3" 0 + O'fd 
af - (15) 

2 

The average value of Crp along the sliding length can be 
obtained by substituting ~if with ~f in Equation 8. The 
corresponding average interracial frictional stress is 

2.5. T h e  d i s p l a c e m e n t  
The difference between the crack-opening displace- 
ment and the displacement of the composite due to 
interfacial debonding is not considered by many re- 
searchers. This difference is clarified as follows. 

2.5. 1. The crack-opening displacement 
The axial displacement of the fibre at the loaded 
surface, wf(h), due to sliding can be obtained by integ- 
ration of the axial strain along the sliding length, 
such that 

h(cro + ( 5 " f d  - -  2Crf=) 
wf = (18a) 

2El 

The applied stress is in the axial direction, and the 
axial displacement due to crp and Poisson's effect is 
negligible. Similarly, the axial displacement of the 
matrix at the loaded surface, win(h), is 

h(CYmd -- 20"m~) 
W m ~-~ ( 1 8 b )  

2Em 

The half crack-opening displacement (Fig. 2c), 
uo( = wf(h) - win(h)), becomes 

h ( 
blO = ~ f f  (7i0 27 (Yd VmEm ] (19) 

2.5.2. The displacement of the composite 
due to debonding 

In the absence of interracial debonding, the axial 
strain in the composite, ac, is (Fig. 2b) 

gfc50 
~ - ( 2 0 )  

Er 

The corresponding axial displacement, We, within 
a length h is 

hVfcYo 
wo(h) - (21) 

Eo 

[( )}f E m  

\ Er 

Vfvm~ ( v f g  m VfVm" ~ VfEf~ ( V f E n a  V f V m ~  V m E m  (3" d" 

~ m / / + \ E f  + Vm ] E c _ l ~ ~  + Vm//  Ec 

2D 
(16) 

The sign of the shear stre~ss signifies the direction of 
shear. It is noted that ~i is negative due to the coordi- 
nate system (Fig. 2c) used in the present study, and it is 
a function of the loading stress (i.e. ao) on the fibre. 

Adopting the average interfacial frictional stress, the 
sliding zone length, h, can be obtained from Equation 
2, such that 

-- a(cy o -- cyfa ) h = (17a) 
2~i 

Substitution of Equation 14a into Equation 17a yields 

--  aVmEm(CYo -- oa) 
h = (17b) 

2Efi:i 

Hence, the additional axial displacement of the com- 
posite due to debonding (Fig. 2c), Udebond( = wf(h) 

--  we(h)), becomes 

h VVmEm(o'o + O'd) -] 
Udeb~ - -  2 E l  k E c  - -  2(lfz_] (22) 

2.6. The m a t r i x  c r a c k i n g  stress  
The energy-based criterion [7, 8] is adopted to ana- 
lyse the critical stress required for matrix cracking. 
For the problem considered in the present study, the 
following energy terms are involved: (1) Ur(,) and 
Urn(,), the elastic strain energies in the fibre and the 
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the residual axial stress on the matrix cracking stress 
are shown in the Appendix. 

2.6. 1. The elastic strain energy in region I 
due to the applied stress 

The fibre and the matrix remain bonded in this region, 
and the axial strain in the composite is described by 
Equation 20. The axial stresses in the fibre and the 
matrix, ~f and ~m, are uniform along the axial direc- 
tion, such that 

VfEr~o 
~f = (23a) 

E~ 

gfEm~o 
~rn - (23b) 

Ec 

Figure 4 Schematic diagram of a steady-state matrix crack in a long 
specimen of unit depth to analyse the matrix cracking stress. 

matrix which result from the applied stress, (2) U f ( r )  

and Um(o, the elastic strain energies in the fibre and 
the matrix which result from the residual stresses, (3) 
Ui,t, the interaction energy between the applied stress 
and the residual stress, (4) Us, the energy due to sliding 
at the debonded interface, (5) Gm, the energy release 
rate for matrix cracking, (6) Gi, the energy release rate 
for interracial debonding, and (7) W, the work done by 
the applied stress. 

To adopt the energy-based cracking criterion, 
a steady-state matrix crack in a long specimen of unit 
depth is considered (Fig. 4) [7, 8, 24]. The crack ex- 
tends through the depth of the specimen with 
a straight front. Under an applied stress, ~ ,  the crack 
advances a distance dc. For steady-state cracking, the 
stress at the crack front remains unchanged during 
crack extension, and the stresses far behind and ahead 
of the crack front also remain unchanged. Hence, the 
energy changes in the specimen due to crack extension 
are the differences in energy between two strips, which 
are, respectively, far behind and ahead of the crack 
front, of thicknesses dc. In the strip far ahead of the 
crack front, the fibre and the matrix remain bonded. 
In the strip far behind the crack front, interracial 
debonding and sliding occur within a length of 2h 
which is denoted by a shaded region in Fig. 4. Hence, 
to analySe the energy difference between these two 
strips, it is sufficient to consider the two shaded re- 
gions in Fig. 4 which are designated regions ! and II, 
respectively, for the regions ahead of and behind the 
crack front. 

During crack extension and interfacial debonding, 
the stress changes in the fibre and the matrix are 
significant only in the axial direction. Hence, the en- 
ergy due to only the axial stress is considered for the 
fibre and the matrix. The solution of the matrix crack- 
ing stress is complicated by including the residual 
axial stress in the analysis. Hence, the residual axial 
stress is excluded in this section. HoweTer, the energy 
terms due to the residual axial stress, and the effect of 

The elastic strain energy density in the fibre and the 
matrix are cyzf/2Ef and ~Zm/2Em, respectively. With unit 
depth, the volume in region I is 2hdc. Because the fibre 
and the matrix have the volume fractions of Vf and Vm 
respectively, the corresponding elastic strain energies, 
U f ( a l  ) and U m ( a l ) ,  in region I are 

h Vf cy~ dc 
Ue(al) -- (24a) 

E f  

h Vm cy2 dc 
U m ( a l  ) - -  (24b) 

Em 

2.6.2. The elastic strain energy in region II 
due to the applied stress 

Interracial debonding and sliding occur in this region. 
Adopting the average interracial frictional stress, the 
axial stresses in the fibre and the matrix, ~f and C~m, 
are linear along the axial direction, such that 

Z(O" 0 - -  (3"fd) 
O"f = (~fd + 0 ~< z ~< h (25a) 

h 

Om= (1 0~<z~<h (25b) 

In region II, the elastic strain energies in the fibre and 
the matrix, Uf~,m and Urn(al l ) ,  a r e  

Urn.n) = Ef ~f2dz (26a) 

Vmdc i h 
Um(al I )  - -  E m  .Jo ~amdz (26b) 

The elastic strain energy differences between regions II 
and I are 

dUr(a) = Uf(an ) -- Uf(al ~ (27a) 

dUm(,~ = U r n ( a l l ) -  U m ( a i  ) (27b) 
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Substitution of Equations 14, 17b, 24, and 26 into The relation between the energy release rate for inter- 
Equation 27 yields facial debonding, G~, and the debond stress, Crd, has 

2 2 i -aVfV~,E,n(C~o cra)[(3VfEf + VmEm)( or2 + ~oga) + VmEmC~]dc 
d Uf(a) = 6~iEfE 3 (28a) 

2 2 2 
a V i  V~Em(CY 0 - -  Crd)(2cr 2 + 2CreCY d o~)dc 

d Umta) = 6{iE 3 (28b) 

2.6.3. The sliding energy and the work 
The sliding energy exists in region II but not in region 
I. In region II, the axial displacements resulted from 
the axial stresses described by Equations 25a and 
25b are 

Zi-Z(~o -- Crf,:l) + 2h~fd] 
Wf(Z) = 0~<z~<h (29a) 

2hEr 

z(2h - Z)Crr~d 
WIn(Z) -- 0~<z~<h (29b) 

2hEm 

Energy is dissipated due to the relative displacement 
between the fibre and the matrix under a constant 
interfacial frictional stress, ~. The sliding energy in 
region II is equal to the change in the sliding energy 
due to crack extension, such that 

- -  4adc fo  dUs - bZ ~i(Wf - w~,)dz (30a) 

where the negative sign is due to the negative value of 
{~. Substitution of Equations 14, 17b, and 29 into 
Equation 30a yields 

2 2 --aVfV~Em(~o (3"d)2((3"0 + 2~d)dC 
dUs = 6~ ErE 2 (30b) 

The axial displacement induced by interfacial de- 
bonding and resulting from the applied stress can be 
obtained from Equation 22, such that 

hVmEm(cro + Crd) 
(31) 

U d e b ~  = 2Ef Er 

Compared to region I, region II has an additional 
axial displacement described by Equation 31. With the 
bridging stress, ere, on the fibre, work is done due 
to this displacement (Equation 31). Hence, the work 
done due to interfacial debonding is 

dW = 2Vf  (3" 0 Udebond d c  (32a) 

Substitution of Equations 17b and 31 into Equation 
32a yields 

2 2 2 d W  = - a V f V r ~ E m C Y ~ 1 7 6  - cr2)dc 
2~iEfEe2 (32b) 

2.6.4. The energy release rates for matrix 
cracking and interfacial debonding 

In region II, the energy required for matrix cracking 
and interfacial debonding, dGm and dG~, are 

dGrn = VmGmdc (33a) 

4ah Gi dc 
dGi = b2 (33b) 
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been derived, such that [25, 26] 

= 2(EfEeGI~ a/2 
cy a \ ~ j  (34) 

Combination of Equations 17b, 33b and 34 gives 

2 2 -- aVrVdEm(cro crd) c~dc 
dGi = 2~iEfE 2 (35) 

2.6.5. The matrix cracking stress 
The critical stress, which is applied on the fibre, re- 
quired for matrix cracking, ~orlt, can be obtained from 
the energy balance relation, such that 

dW = dUf(a) + dUm(,~ + dU, + dGm + dGi 

at ere = Crcr, (36) 

Substitution of Equations 28, 30b, 33a, and 35 into 
Equation 36 yields 

- 6~iE~ E 2 G~ 
3 3~] + 2~] = (37) 

( ~ c r i t  - -  C~cr i t  aVfVmEZm 

3. C o m p a r i s o n  w i t h  e x i s t i n g  s o l u t i o n s  
Similar problems have been analysed by Aveston et al. 
(ACK) 1-7] and Marshall et al. (MCE) [8]. However, 
the following conditions were adopted by both the 
ACK and the MCE models. First, the interface be- 
tween the fibre and the matrix is assumed to be un- 
bonded. Second, a constant shear stress, r, is assumed 
(i.e. Poisson's effect is ignored) within the sliding zone 
length, h. Third, residual stresses are not considered. 
The analytical relation between a displacement com- 
ponent and the fibre bridging stress is derived in both 
models. However, the displacement components in the 
two models bear different physical meanings. Whereas 
Udebon~ is considered in the ACK model, Uo is con- 
sidered in the MCE model. This difference has not 
been recognized by many researchers. 

In this section, the solutions obtained from the 
ACK and the MCE models are summarized first. 
Then, by considering a special case, the present solu- 
tion is compared to those obtained from these two 
models. Finally, effects of interfacial bonding and 
Poisson's effect on the matrix cracking stress are 
addressed. 

3.1. The ACK model  [7] 
The additional displacement in the fibre due to matrix 
cracking and interfacial debonding is analysed in the 



3.2. The MCE model [8] 
The relative displacement between the fibre and the 
matrix at the crack surface derived based on the MCE 
model is 

a VmEm Cr 2 
u - (40) 

4Ef Edc 

The displacement given by Equation 40 is half the 
crack-opening displacement. 

~crit 
- 1 + 

~crlt(O) 

When Poisson's effect is ignored, ~i is a constant 
(=/~cy~ = - z ) ,  Equation 44 becomes identical to 
that derived in the ACK model (Equation 39), Equa- 
tion 45 becomes identical to that derived in the MCE 
model (Equation 40), and Equation 46 becomes identi- 
cal to that derived in the ACK model (Equation 38). 
Hence, the existing solutions derived in ACK and 
MCE models can be recovered by considering 
a special case in the present generalized solution. 

3.4. Effects of interfacial bonding and 
Poisson's effect on the matrix 
cracking stress 

Both interfacial bonding and the residual axial stress 
are ignored in the matrix cracking stress defined by 
Equation 44. When Poisson's effect is also ignored, 
this matrix cracking stress is redefined as cr,~t~o). 

In the presence of interracial bonding, the matrix 
cracking stress, Crcr~t, can be obtained numerically from 
Equation 37. Ignoring Poisson's effect, effects of inter- 
faical bonding on the matrix cracking stress are shown 
in Fig. 5, in which the (3"crit/O'crit(O) ratio is plotted as 
a function of crd/o,it<o ). The matrix cracking stress 
increases with the increase in interracial bonding. 

Ignoring interracial bonding, the Cyc~t/~r~rit~o) ratio 
becomes 

3.3. Comparison 
In the absence of interracial bonding and the residual 
axial stress, Equations 17b, 19, 22, and 37 become 

[ (_V f_E_.E m VfVm~ 

Ef Vm / 

(vfE m VfVm~ gfEf~ ]1/3 
+ \ EfzDcyo + Vm J Ec jC~r t (47) 

- -  a VInE m CY 0 
h - (41) 

2Eczi  

h ~ o  
Uo - (42) 

2Er 

h VmEm C~ o 
Udebond -- (43) 

2EfEc  

- -  6~,iEf EZc Gm'~ l/3 
O,rit = - a ~  ] (44) 

Substitution of Equation 41 into Equations 42 and 43 
yields 

- -  aVmEmcY~ 
Uo - ( 4 5 )  

4 E f E ~ i  

Hdebond 
4EfE2~i  

2 2 2 
- a V d  Em~ 0 

(46) 

0.2 0.4 0.6 0.8 

Normal izeddebondstress,~d/~cr i t (o ) 

Poisson's effects on the matrix cracking stress are 
shown in Fig. 6, in which the CYcrit/~c,~t(O) ratio is 
plotted as a function of - crc/Crcr~t(o) for vf = Vm = 0.3 
and Vf = 0.3 at different EdEm ratios. The matrix 
cracking stress decreases with the decrease in 
- CYc/~cr,(O), and this decrease is more pronounced 

when Ef/Em decreases. 
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ACK model, such that 

2 2 2 
aVm Em~o 

u - 4ErE2z (38) 

The relative displacement between the fibre and the 
matrix at the crack surface can also be derived from 
the ACK model; however, it was not explicitly given. 
Using the energy balance relation, the critical applied 
stress on the composite for matrix cracking stress, o~ t  
( = Vf(Ycri,), is 

( l Z z V 2 E f E Z c y m ' ~ l / 3  
er~t = ~. ~ j (39) 

where 7m ( = Gin/2) is the fracture surface energy of the 
matrix. 

Figure 5 The normalized matrix cracking stress, (3"crit/(3"erit(O), a s  
a function of the normalized debond stress, oa/cYcrlt(0) showing the 
effects of interracial bonding on the matrix cracking stress. 

1787 



g 1.0 . . . . . . .  ,, . " 

g 
~ o 9  

o~ 

== 

, 

0.6 

0 5  ,, , , I , J , , ~ . . . .  , . . . .  
o 0 0.5 1 1.5 2 Z 

Normalized r e s i d u a l  c l a m p i n g  s t r e s s , - G o / ( ~ r ~  (o) 

Figure 6 The no rma l i zed  ma t r ix  c rack ing  stress, (~erit/(Ycrlt(O), as  
a funct ion of the normal i zed  res idual  c l amping  stress, - ~dGo,it(o), 

for vf = v,, = 0.3 and  Vr = 0.3 at  different Ef/E,, ra t ios  showing  
Po isson ' s  effects on the ma t r ix  c rack ing  stress. 

4. Conclusion 
Matrix cracking bridged by intact fibres, which de- 
bond from the matrix and then slip against the matrix 
in friction, has been analysed for unidirectional fibre- 
reinforced ceramic composites under a tensile loading 
parallel to the fibre axis. The difference between the 
crack-opening displacement and the displacement of 
the composite due to interfacial debonding have been 
clarified in the present study. Also, the effect of bond- 
ing at the fibre-matrix interface, Poisson's effect of the 
fibre, and residual stresses have been included in the 
present analysis. The existing solutions can be re- 
covered by ignoring interfacial bonding, Poisson's ef- 
fect, and residual stresses in the present generalized 
solution. 

The matrix cracking stress increases with the in- 
crease in interfacial bonding (Fig. 5). Including Pois- 
Son's effect in the analysis, the interfacial frictional 
stress is decreased [Equation (16)] which, in turn, 
results in a decrease in the matrix cracking stress 
(Fig. 6). When the residual axial stress in the matrix is 
tensile (compressive), the matrix cracking stress is 
lower (higher) due to the presence of the residual axial 
stress. To have a better prediction of the mechanical 
behaviour of fibre-reinforced composite using a 
macromechanical model, the above three factors 
should be included in the analysis. The present solu- 
tion is readily to be implemented into a macro- 
mechanical model. 

Appendix: Energy due to residual axial 
stresses 

In the presence of residual axial stresses, the elastic 
strain energy, Uf(r) and Urn(r), and the interaction en- 
ergy, Ui,t, exist. These energy terms can be obtained 
by using Eshelby model [27]. The residual axial stres- 
ses result mainly from the mismatch in the stress-free 
axial strain (e.g. the thermal axial strain) between the 
fibre and the matrix. To derive the relation between 
the residual stress and the mismatch in the stress-free 
strain, the fibre is simulated by an inclusion subjected 
to a transformation strain eT, which is identical to the 
mismatch in the stress-free strain, in the axial direction. 
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A.1. The energy in region I 
In this region, the fibre and the matrix remain bonded, 
and continuity of the axial strain is required, such that 

O'fz O'mz 
- -  + ~T = ( A 1 )  
E f  E m 

where the residual axial stresses, cyf= and eying, satisfy 
the relation described by Equation 11. Combining 
Equations 11 and A1, the axial transformation strain, 
eT, can be related to crf= by 

- -  E c  Gfz 
eT -- (A2) 

VmEfEm 

The total elastic strain energy in the fibre and the 
matrix is [27] 

1 feyfz 8TdV (A3) Ur(rl) + Um(rl) -- 2 

where V is the volume of the fibre. Hence, the total 
elastic strain energy in region I is 

Uf(rl  ) -~ Um(rt)  - -  hVf~fz~TdC (A4) 

The interaction energy of the residual axial stress 
with the applied stress is [27] 

U i n t ( l )  - -  feyf eTd V (A5) 

where Gf is uniform along the fibre length and is 
defined by Equation (23a). The total interaction en- 
ergy in region I is 

- 2h V f 2 E f  O'o ETdC 
Uint(i) = (A6) 

Ec 

A.2. The energy in region II 
In this region, the residual axial stresses are com- 
pletely relaxed due to interfacial debonding, and the 
total elastic strain energy in the fibre and the matrix is 
zero, i.e. 

Uf(ril) -}- Um(rii) = 0 (A7) 

The interaction energy of the residual axial stress 
with the applied stress is dictated by Equation A5. 
However, the axial stress in the fibre, eye, is described 
by Equation 25a. Hence, in region II, the total inter- 
action energy in the fibre and the matrix is 

;o[ z(~176 ~ Uint(ii  ) = - -  2 V f d c  eyfd + ~- e T d V  

(A8) 

A.3. The contribution of the residual axial 
stress to the energy change during 
matrix cracking 

The contribution of the residual axial stress to the 
energy change during matrix cracking is 

dUf( r )  -1- dUm(r )  + dUi,t = Uf(rm -~ Um(rII) 

- -  Uf(r l  ) - -  Um(rl  ) + Uint(ll  ) - -  Uint(l) (A9) 



Subsitution of Equations 14a, 17b, A4, A6, A7 and A8 
into Equation A9 yields 

dUr(~) + dUm(,) + dUint 

x V V m g m ( o o  + (~d) 
L Er 

- aVf(cyo -. oa)dc 

2"tiEr 

Ofz / O-fz (A 10) 
J 

In the presence of residual axial stresses, the energy 
balance equation (Equation 36) is replaced by 

dW = dUf(a) + dUm(a) + dUf(r) + dUm(r) 

+ dUi,t + dU, + dGm + dGi 

at (Yo = O ' c r i t  (All) 

When the residual axial stress in the fibre is tensile (i.e. 
~fz > 0), the corresponding residual axial stress in the 
matrix is compressive, and the contribution of residual 
axial stresses to the energy change during matrix 
cracking (i.e. Equation A10) is positive. To satisfy 
Equation A l l  for matrix cracking, more work and, 
hence, higher applied stress is required. Conversely, 
when residual axial stresses in the fibre and the matrix 
are compressive and tensile, respectively, the matrix 
cracking stress is lower due to the presence of residual 
axial stresses. 
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